# PREDICTING AVIAN RESPONSES TO FOREST MANAGEMENT PRACTICES

Angela White, USDA Forest Service, PSW Elise Zipkin, USGS Patuxent Wildlife Research Center Patricia Manley, USDA Forest Service, PSW



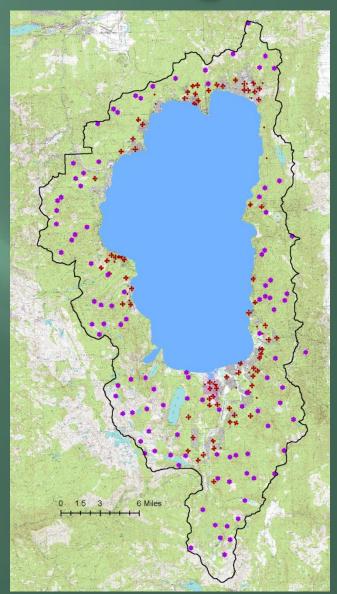




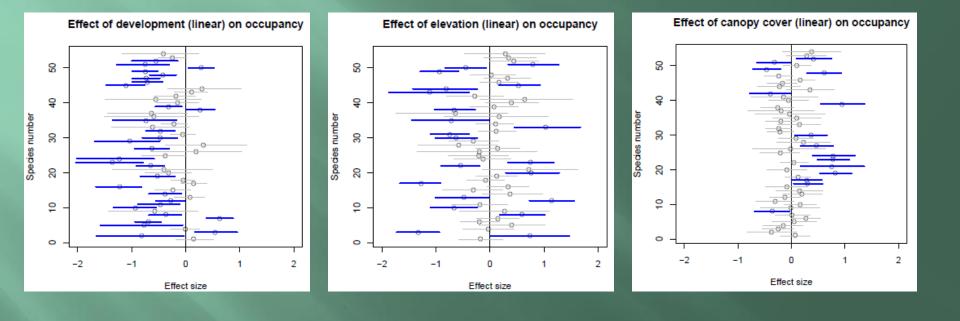
### Management Options

#### Do nothing

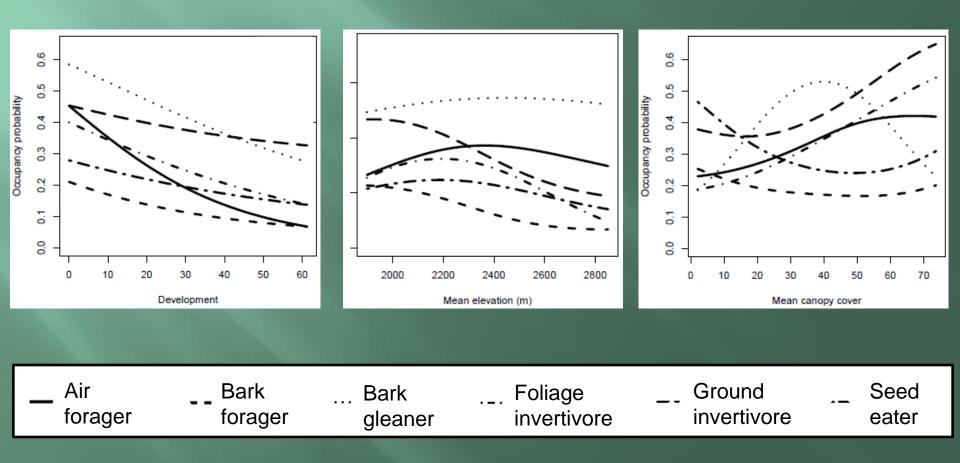
- Traditional fuel reduction prescription
  - Reducing ladder fuels and canopy cover
- Spatial heterogeneity prescription (GTR-220)
  - Emphasis on maintaining/creating structural variability




**Predicting Species' Responses to Fuel Reduction Treatments** Experimental studies are often ambiguous Treatments and starting conditions vary Measuring short-term responses Why use occupancy modeling? Responses not limited to abundant species Accounts for imperfect detection Models habitat covariates directly

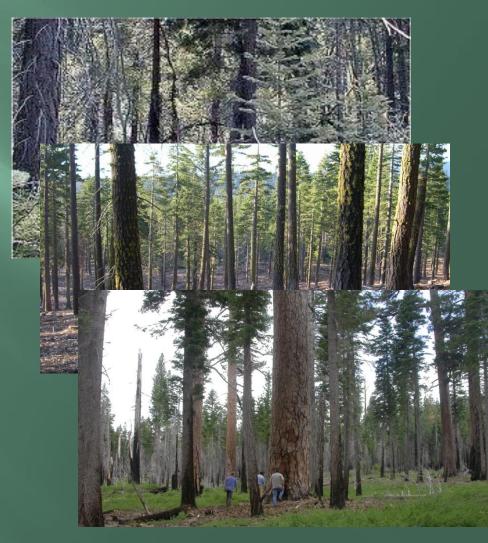

# **Occupancy** Modeling

Probability of occupancy Requirements Detection/nondetection data Spatially and temporally replicated data Point count data collected from 742 locations from 2002-


2005



# What Factors Drive Diversity?




### What Are the Consequences to Ecosystem Function?



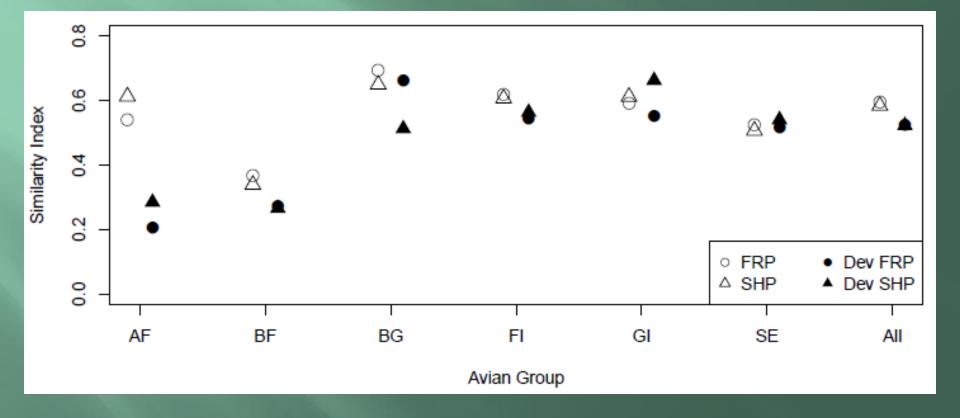
#### Predict Avian Response to Management Practices

- How does treatment impact species, communities and ecosystem services
- Does incorporating spatial heterogeneity in treatments benefit biodiversity?
- How does urbanization mediate wildlife response?



#### Management Impacts on Species Richness

Table 3. Mean, standard deviation and 95 % posterior intervals in species richness for avian groups predicted under different forest management practices.

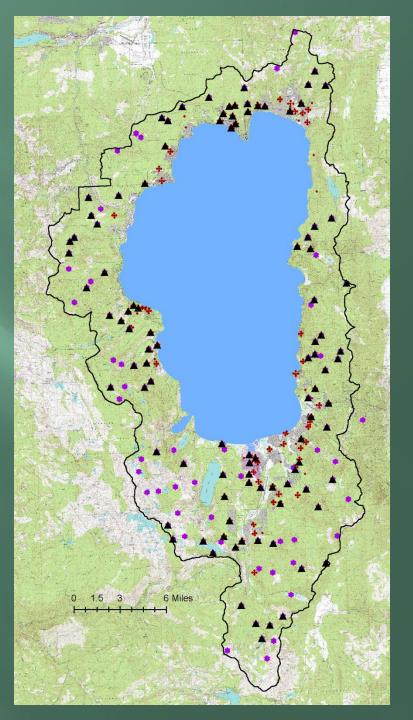

|                   | Undeveloped      |                  |                  | Developed        |                  |                  |
|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Avian group       | FSF              | FRP              | SHP              | FSF              | FRP              | SHP              |
| All species (46)  | $21.11 \pm 2.41$ | $17.73 \pm 2.62$ | $19.18 \pm 2.73$ | $16.88 \pm 2.47$ | $13.47 \pm 2.34$ | $14.06 \pm 2.60$ |
|                   | (16 - 26)        | (13 - 23)        | (14 - 25)        | (12 - 22)        | (9 - 18)         | (9 - 19)         |
| Air foragers (5)  | $2.31 \pm 0.98$  | $2.31 \pm 0.95$  | $2.56 \pm 0.91$  | $1.04 \pm 0.87$  | $0.97 \pm 0.84$  | $1.26 \pm 0.85$  |
|                   | (0 - 4)          | (1-4)            | (1 - 4)          | (0 - 3)          | (0 - 3)          | (0 - 3)          |
| Bark foragers (5) | $1.27 \pm 0.90$  | $1.29 \pm 0.91$  | $1.15 \pm 0.88$  | $0.93 \pm 0.82$  | $0.86 \pm 0.80$  | $0.82 \pm 0.76$  |
|                   | (0 - 3)          | (0 - 3)          | (0 - 3)          | (0 - 3)          | (0 - 3)          | (0 - 2)          |
| Bark gleaners (6) | $2.35 \pm 0.65$  | $3.53 \pm 0.94$  | $2.92 \pm 1.11$  | $2.05 \pm 0.63$  | $2.80 \pm 1.00$  | $2.10 \pm 1.07$  |
|                   | (1 - 4)          | (2 - 5)          | (1 - 5)          | (1 - 3)          | (1 - 5)          | (0 - 4)          |
| Foliage           | $10.40 \pm 1.33$ | $5.84 \pm 1.44$  | $7.80 \pm 1.60$  | $8.90 \pm 1.57$  | $4.48 \pm 1.23$  | $5.85 \pm 1.59$  |
| invertivores (15) | (8 - 13)         | (3 - 9)          | (5 - 11)         | (6 - 12)         | (2 - 7)          | (3 - 9)          |
| Ground            | $2.36 \pm 0.76$  | $2.25 \pm 0.93$  | $2.02 \pm 0.84$  | $2.03 \pm 0.84$  | $1.93 \pm 0.82$  | $1.82 \pm 0.75$  |
| invertivores (5)  | (1 - 4)          | (0 - 4)          | (1 - 4)          | (1 - 4)          | (0 - 3)          | (1 - 3)          |
| Seed eaters (10)  | $2.34 \pm 1.09$  | $2.54 \pm 1.05$  | $2.71 \pm 1.16$  | $1.99 \pm 1.05$  | $2.36 \pm 0.98$  | $2.24 \pm 1.02$  |
|                   | (0 - 5)          | (1 - 5)          | (1 - 5)          | (0 - 4)          | (1 - 4)          | (1 - 4)          |
|                   |                  |                  |                  | 1                | -                | -                |

#### Management Impacts on Species Richness

Table 3. Mean, standard deviation and 95 % posterior intervals in species richness for avian groups predicted under different forest management practices.

|                   | Undeveloped      |                  |                  | Developed        |                  |                  |  |
|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|
| Avian group       | FSF              | FRP              | SHP              | FSF              | FRP              | SHP              |  |
| All species (46)  | $21.11 \pm 2.41$ | $17.73 \pm 2.62$ | $19.18 \pm 2.73$ | $16.88 \pm 2.47$ | $13.47 \pm 2.34$ | $14.06 \pm 2.60$ |  |
|                   | (16 - 26)        | (13 - 23)        | (14 - 25)        | (12 - 22)        | (9 - 18)         | (9 - 19)         |  |
| Air foragers (5)  | $2.31 \pm 0.98$  | $2.31 \pm 0.95$  | $2.56 \pm 0.91$  | $1.04 \pm 0.87$  | $0.97 \pm 0.84$  | $1.26 \pm 0.85$  |  |
|                   | (0 - 4)          | (1-4)            | (1 - 4)          | (0 - 3)          | (0 - 3)          | (0 - 3)          |  |
| Bark foragers (5) | $1.27 \pm 0.90$  | $1.29 \pm 0.91$  | $1.15 \pm 0.88$  | $0.93 \pm 0.82$  | $0.86 \pm 0.80$  | $0.82 \pm 0.76$  |  |
|                   | (0 - 3)          | (0 - 3)          | (0 - 3)          | (0 - 3)          | (0 - 3)          | (0 - 2)          |  |
| Bark gleaners (6) | $2.35 \pm 0.65$  | $3.53 \pm 0.94$  | $2.92 \pm 1.11$  | $2.05 \pm 0.63$  | $2.80 \pm 1.00$  | $2.10 \pm 1.07$  |  |
|                   | (1 - 4)          | (2 - 5)          | (1 - 5)          | (1 - 3)          | (1 - 5)          | (0 - 4)          |  |
| Foliage           | $10.40 \pm 1.33$ | $5.84 \pm 1.44$  | $7.80 \pm 1.60$  | 8.90 ± 1.57      | $4.48 \pm 1.23$  | 5.85 ± 1.59      |  |
| invertivores (15) | (8 - 13)         | (3 - 9)          | (5 - 11)         | (6 - 12)         | (2 - 7)          | (3 - 9)          |  |
| Ground            | $2.36 \pm 0.76$  | $2.25 \pm 0.93$  | $2.02 \pm 0.84$  | $2.03 \pm 0.84$  | $1.93 \pm 0.82$  | $1.82 \pm 0.75$  |  |
| invertivores (5)  | (1 - 4)          | (0 - 4)          | (1 - 4)          | (1 - 4)          | (0 - 3)          | (1 - 3)          |  |
| Seed eaters (10)  | $2.34 \pm 1.09$  | $2.54 \pm 1.05$  | $2.71 \pm 1.16$  | $1.99 \pm 1.05$  | $2.36 \pm 0.98$  | $2.24 \pm 1.02$  |  |
|                   | (0 - 5)          | (1 - 5)          | (1 - 5)          | (0 - 4)          | (1 - 4)          | (1 - 4)          |  |

#### Management Impacts on Community Composition




# Science Synthesis & Gaps

- Assess "biodiversity" needs
- Embrace heterogeneity
- Further need to understand management impacts on rarer species
- Link between species composition and ecosystem services



 Collaborative project between USDA Forest
Service PSW & Spatial Informatics
Group (SIG)

